Wick calculus on spaces of regular generalized functions of Levy white noise analysis
نویسندگان
چکیده
منابع مشابه
Wick calculus for regular generalized functions
Wick calculus in Gaussian analysis is investigated. It is shown that this calculus can be developed in a space of regular generalized functions. The results are applied to the discussion of solutions for Wick type stochastic (partial) diierential equations. In particular, the viscous Burgers equation with a stochastic source is studied. Its solution is shown to be a regular generalized process ...
متن کاملOn Regular Generalized Functions in White Noise Analysis and Their Applications
We dedicate this work to the memory of a great mathematician-Abstract The concepts of regular generalized functions in Gaussian analysis are presented. Spaces of regular generalized functions are characterized and equipped with an innnite dimensional calculus. Finally, these concepts are applied in the theory of stochastic (partial) diier-ential equations of Wick type and a generalized Clark-Oc...
متن کاملConvolution calculus on white noise spaces and Feynman graph representation of generalized renormalization flows
In this note we outline some novel connections between the following fields: 1) Convolution calculus on white noise spaces 2) Pseudo-differential operators and Lévy processes on infinite dimensional spaces 3) Feynman graph representations of convolution semigroups 4) generalized renormalization group flows and 5) the thermodynamic limit of particle systems.
متن کاملOn rarely generalized regular fuzzy continuous functions in fuzzy topological spaces
In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carpathian Mathematical Publications
سال: 2018
ISSN: 2313-0210,2075-9827
DOI: 10.15330/cmp.10.1.82-104